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This paper addresses the issue of internal consistency in the molecular dynamics with quantum transitions
(MDQT) surface hopping method. The MDQT method is based on Tully’s fewest switches algorithm, which
is designed to ensure that the fraction of trajectories on each surface is equivalent to the corresponding average
quantum probability determined by coherent propagation of the quantum amplitudes. For many systems,
however, this internal consistency is not maintained. Two reasons for this discrepancy are the existence of
classically forbidden transitions and the divergence of the independent trajectories. This paper presents a
modified MDQT method that improves the internal consistency. The classically forbidden switches are
eliminated by utilizing modified velocities for the integration of the quantum amplitudes, and the difficulties
due to divergent trajectories are alleviated by removing the coherence of the quantum amplitudes when each
trajectory leaves a nonadiabatic coupling region. The standard and modified MDQT methods are compared
to fully quantum calculations for a classic model for ultrafast electronic relaxation (i.e., a two-state three-
mode model of the conically intersecting S1 and S2 excited states of pyrazine). The standard MDQT calculations
exhibit significant discrepancies between the fraction of trajectories in each state and the corresponding average
quantum probability. The modified MDQT method leads to remarkable internal consistency for this model
system.

I. Introduction

Trajectory surface hopping methods have been used exten-
sively to study processes occuring on multiple coupled potential
energy surfaces. In these methods the system is divided into a
quantum and a classical subsystem. The classical subsystem is
approximated as an ensemble of independent trajectories, and
each trajectory moves classically on a single potential energy
surface with the possibility of instantaneous transitions among
the surfaces. The various surface hopping methods1-31 differ
mainly in how these transitions are incorporated. This paper
centers on the molecular dynamics with quantum transitions
(MDQT) method, which is based on Tully’s stochastic fewest
switches algorithm.14 In this algorithm the quantum amplitudes
for all surfaces are propagated coherently along each indepen-
dent trajectory, and the probability of a transition depends on
the rate of change of the quantum probabilities determined from
the quantum amplitudes. The number of transitions is minimized
by specifying that the flux of trajectories switching from one
state to another is unidirectional over a specified time interval.
This algorithm is designed to ensure that the fraction of
trajectories on each surface is equivalent to the corresponding
average quantum probability. As has been noticed in the
literature, however, this internal consistency is not always
maintained.32,33The goal of this paper is to identify the reasons
for this discrepancy and to develop methods for improving the
internal consistency of MDQT. These new methods are applied
to a model of the conically intersecting S1 and S2 excited states
of pyrazine. This model system was chosen because it is a
classic example of ultrafast electronic relaxation34-40 and was
previously found to exhibit a significant discrepancy between
the fraction of trajectories in each state and the corresponding
average quantum probability in MDQT calculations.33

The reason often cited for the internal inconsistency in MDQT
is the existence of classically forbidden transitions. In MDQT,
energy is conserved during a transition by adjusting the classical
velocities as if they were subjected to a force in the direction
of the nonadiabatic coupling vector. If there is not enough
velocity in this direction to maintain energy conservation, then
the transition is classically forbidden and is not allowed to occur.
(In this case, the component of velocity in the direction of the
nonadiabatic coupling is reversed15 or, in some implementations,
the velocity is not changed.33) Such classically forbidden
transitions lead to an inconsistency between the fraction of
trajectories in each state and the corresponding average quantum
probability. The most rigorous way to fix this problem is to
increase the size of the quantum mechanical subsystem or to
use semiclassical formulations. Unfortunately, a sufficiently
large quantum mechanical subsystem is often computationally
impractical and, although a number of promising semiclassical
formulations have been developed recently,41-49 the surface
hopping approach is still appealing due to its conceptual
simplicity and computational speed.

Classically forbidden transitions can be eliminated in the
framework of the MDQT method in a number of ways. One
hypothesis is that the forbidden transitions should occur and
that the fundamental limitation is the method of velocity
adjustment. In this case, classically forbidden transitions can
be eliminated by taking energy from other components of the
velocities, delaying the transition until the energy is available
in the appropriate component of the velocities, or, if all else
fails, violating energy conservation. An alternative hypothesis
is that the forbidden transitions should not occur and that the
fundamental limitation is the method of integrating the quantum
amplitudes. In support of this alternative view, Mu¨ller and
Stock33 found that for the pyrazine model the agreement with
exact quantum calculations was much better for the fraction of* Corresponding author. E-mail: hammes-schiffer.1@nd.edu.
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trajectories in each state than for the corresponding average
quantum probability.

Adopting this alternative view, in a previous paper50 we
presented a modification of MDQT (denoted MDQT*) that
eliminates classically forbidden transitions by utilizing modified
velocities for the integration of the quantum amplitudes. In this
approach, the nonadiabatic coupling between two states vanishes
if a switch to the unoccupied state would be classically
forbidden. As a result, the quantum amplitudes between these
two states are uncoupled so population is not transferred between
these two states. According to the fewest switches algorithm,
in this case the probability of a transition between these two
states vanishes. In ref 50 we applied both MDQT and MDQT*
to models representing single and double proton transfer and
found that both MDQT and MDQT* maintained internal
consistency. In this paper we apply MDQT* to the pyrazine
model system to provide a more rigorous test of MDQT*. We
show that even in the absence of classically forbidden switches
the MDQT* method does not maintain internal consistency for
this model system.

Another reason for the lack of internal consistency in MDQT
is that the divergence of independent trajectories may lead to a
breakdown in the basic assumption of the fewest switches
algorithm. This basic assumption is that when a trajectory passes
through a nonadiabatic coupling region with nonzero quantum
amplitudes for the other surfaces, an ensemble of virtually
identical trajectories (i.e., with similar quantum amplitudes and
classical coordinates and momenta) are apportioned among the
other surfaces according to these quantum amplitudes. (Note
that the trajectories are expected to vary slightly due to different
initial conditions.) Typically, this assumption is valid for one-
dimensional systems involving a single pass through a single
nonadiabatic coupling region. Unfortunately, this assumption
is violated in many other situations.51

A dramatic example of the breakdown of the fewest switches
algorithm can be illustrated with a two-state model with two
nonadiabatic coupling regions. Assume all of the population
starts on the upper state, and when it passes through the first
nonadiabatic coupling region some of the population transfers
down to the lower state. Assume also that there is a barrier on
the lower state preventing the lower state population from
reaching the second nonadiabatic coupling region. In this case,
when the upper state population passes through the second
nonadiabatic coupling region the quantum amplitudes of the
trajectories are nonzero for the lower state, but there are no
trajectories on the lower state in this nonadiabatic coupling
region. As a result, the population flux determined by the net
change in quantum probabilities for the trajectories on the upper
state is inaccurate. (See ref 51 for a clear and comprehensive
analysis of such situations.)

A breakdown of the fewest switches algorithm could also
occur for a single pass through a single nonadiabatic coupling
region if the potential energy surfaces are of very different
character in this region (leading to different quantum amplitudes
and classical coordinates and momenta of the trajectories on
each state). Figure 1 depicts a schematic illustration of such a
situation for a two-state model, whereP2 andF2 indicate the
average quantum probability and fraction of trajectories, re-
spectively, for the upper state in an MDQT simulation. As
shown in Figure 1a, all of the population is assumed to start on
the upper state. As the population passes through the nonadia-
batic coupling region, it starts to transfer down to the lower
state. If the lower and upper state surfaces are similar throughout
the nonadiabatic coupling region, the internal consistency will

be maintained. If the two surfaces differ, however, the trajec-
tories on the lower state may diverge and follow different paths
as they leave the nonadiabatic coupling region. In Figure 1, the
internal consistency is maintained between the time shown in
Figure 1a and the time shown in Figure 1b. The arrows in Figure
1, b and c, indicate that after the time shown in Figure 1b, the
trajectories on the lower state move out of the nonadiabatic
coupling region before the trajectories on the upper state have
passed through the nonadiabatic coupling region. The orienta-
tions of the arrows indicate that the trajectories on the lower
state are moving in a different direction than those on the upper
state. Note that this situation is more likely for multidimensional
systems. If the population flux is unidirectional (i.e., from the
upper to the lower state) throughout the coupling region, this
divergence will not affect the final fraction of trajectories in
each state. On the other hand, this divergence will lead to an
internal inconsistency because the quantum amplitudes of the
divergent trajectories will not be consistent with the quantum
amplitudes of the trajectories that continued to move on the
excited state. Thus, as illustrated in Figure 1c, the fraction of
trajectories on each state may be correct after passing through
this nonadiabatic coupling region, but the internal consistency
will not be maintained. In this paper we present evidence that
this is the main source of the discrepancies noticed by Mu¨ller
and Stock for the pyrazine model system.

This inconsistency can be alleviated by eliminating the
coherence of the quantum amplitudes between well-separated
regions of nonadiabatic coupling. In this paper we present a
method in which the quantum amplitudes are reset so that the
occupied state has a quantum probability of unity after each
trajectory has left the nonadiabatic coupling region. (Note that
this type of resetting of the quantum amplitudes was also
proposed in ref 51. Also note that the resetting of the quantum
amplitudes will affect the number of classically forbidden
transitions.) We emphasize that resetting the quantum amplitudes
is not a general solution to this inherent problem of mixed
quantum/classical methods. Clearly this prescription would be
inappropriate for systems where the quantum interference
between nonadiabatic coupling regions is important.29,31 For

Figure 1. A schematic picture of the effects of divergent trajectories
in MDQT simulations, whereP2 andF2 denote the average quantum
probability and the fraction of trajectories, respectively, in the upper
state. The populations for the two states are shown for (a) the initial
time, (b) an intermediate time, and (c) the final time. The different
orientations of the arrows within (b) and (c) indicate that the trajectories
are moving in different directions.
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many systems, however, such quantum interference effects are
washed out due to decoherence in condensed phase systems or
averaging over a range of initial conditions. In these cases this
method for promoting internal consistency in MDQT is physi-
cally justified. We point out that similar methods involving the
removal of the coherence of the quantum amplitudes have been
applied previously in conjunction with a variety of surface
hopping methods.4,17,24Moreover, Rossky and co-workers have
performed a thorough analysis of the treatment of coherence in
surface hopping.52,53

An outline of this paper is as follows. Section II presents the
model system for internal conversion in pyrazine, including the
diabatic and adiabatic Hamiltonian matrices for this system.
Section III describes the methodology for fully quantum
dynamical and mixed quantum/classical MDQT calculations.
This section also presents modifications of MDQT to eliminate
classically forbidden transitions and to remove the coherence
of the quantum amplitudes far from regions of nonadiabatic
coupling. Section IV presents the results and compares the
various methods, and section V presents our conclusions.

II. Model System

The model system investigated in this paper is a two-state
three-mode model of the conical intersection of the S1[1B3u

(nπ*)] and S2[1B2u(ππ*)] excited states of pyrazine. This conical
intersection has been shown to trigger an ultrafast S2 f S1

internal conversion process and a dephasing of the vibrational
motion on a femtosecond time scale.34,36 The model used in
this paper includes a single vibronic coupling modeν10a and
two totally symmetric tuning modesν1, ν6a (which modulate
the energetic separation of the electronic states). This model
invokes the following standard simplifications:38,39(1) the model
Hamiltonian is constructed in a diabatic electronic basis; (2)
the harmonic approximation is invoked for the diabatic potential
energy surfaces and the vibrational frequencies are assumed to
be equal for all of the unperturbed surfaces; and (3) interstate
and intrastate coupling terms are approximated by linear terms
in the normal coordinates. This model has been used throughout
the literature as a standard example of ultrafast electronic
relaxation.34-39 (Note that other models for conical intersections
have also been studied with similar methods.54)

The Hamiltonian is defined in terms of the two diabatic
electronic basis states|ψ1

dia〉 and |ψ2
dia〉 that represent the two

lowest excited singlet states (S1 and S2) of pyrazine. The
Hamiltonian matrix in the diabatic representation can be
expressed as

In the first term,TN is the kinetic energy expressed as

and V0 is a harmonic oscillator potential with respect to the
electronic ground state equilibrium geometry

Hereωj is the vibrational frequency andxj andpj are the position
and momentum of thejth vibrational mode, wherej ) 1
represents the tuning modeν1, j ) 2 represents the tuning mode
ν6a, andj ) 3 represents the vibronic coupling modeν10a. For
this model the mass corresponding to modej is mj ) 1/ωj with
the appropriate units conversion. In this paper the coordinates
of the modes are expressed in vector notation asx ) (x1, x2,
x3), Ĩ is the identity matrix, andp ) 1. In the state-dependent
part of the Hamiltonian,Ek is the vertical transition energy of
the diabatic statek andκj

(k) is the gradient of the excited state
potentialk with respect toxj at the ground state equilibrium
geometry. The off-diagonal termλx3 is responsible for the
vibronic coupling between the two electronic states. The values
of the parameters for this model are given in Table I of ref 33.

Although the diabatic representation is useful for fully
quantum dynamical calculations, the adiabatic representation
is more appropriate for surface hopping calculations. As shown
in ref 55, the transformation from the diabatic to the adiabatic
representation is given by

where the adiabatic basis states are expressed in vector notation
as

and the diabatic basis states are expressed in vector notation as

The transformation matrix can be expressed as

whereφ is defined by

and ∆ is half the energy gap between the diabatic electronic
surfaces atx:

Note that theS matrix is a double-valued function of the
coordinatesx. In this paper we define a uniqueS matrix by
following the prescription given in ref 56 of setting the signs
of S11 andS22 equal to the sign ofx3.

Invoking the Born-Oppenheimer approximation, the adia-
batic Hamiltonian matrix is

H̃dia ) (TN + V0)Ĩ + (E1 + ∑
j)1

2

κj
(1)xj

λx3

λx3 E2 + ∑
j)1

2

κj
(2)xj

) (1)

TN ) 1/2∑
j)1

3

ωjpj
2 (2)

V0 ) 1/2∑
j)1

3

ωjxj
2 (3)

ψad(x) ) S̃†(x)ψdia (4)

ψad(x) ) (ψ1
ad(x)

ψ2
ad(x) ) (5)

ψdia ) (ψ1
dia

ψ2
dia) (6)

S̃(x) ) (cosφ sinφ

-sinφ cosφ ) (7)

sin(2φ) )
λx3

(∆2 + λ2x3
2)1/2

cos(2φ) ) ∆
(∆2 + λ2x3

2)1/2
(8)

∆ )
1

2[(E2 + ∑
j)1

2

κj
(2)xj) - (E1 + ∑

j)1

2

κj
(1)xj)] (9)

H̃ad ) (TN + V0)Ĩ +

(Eh - (∆2 + λ2x3
2)1/2 0

0 Eh + (∆2 + λ2x3
2)1/2) (10)
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where

The two adiabatic Born-Oppenheimer potential energy surfaces
are described by

(See ref 56 for a discussion of the non-Born-Oppenheimer
terms in the adiabatic Hamiltonian.)

III. Methods

A. Fully Quantum Dynamical Method. The fully quantum
dynamical calculations were performed in the diabatic repre-
sentation to avoid numerical difficulties associated with the
double-valued nature of theSmatrix. The time-dependent wave
functionΨ(x,t) can be expressed in terms of the diabatic basis
states as

whereøk(x,t) is the vibrational wave function corresponding to
the diabatic state|ψk

dia〉. Substituting this equation forΨ(x,t)
into the time-dependent Schro¨dinger equation using the diabatic
Hamiltonian matrix given in eq 10 leads to the two coupled
equations of motion

whereVij are matrix elements of the matrixH̃dia - TNĨ . We
solve these equations of motion using the predictor-corrector
method with the discrete variable representation. These results
are converted to the adiabatic representation for comparison to
the surface hopping results using the projector operator defined
in ref 55.

B. Surface Hopping Methods.1. Standard MDQT Method.
In surface hopping methods the classical subsystem moves
according to the standard classical equations of motion

whereWk(x) (defined in eq 12) is the potential energy of the
occupied adiabatic state. The time-dependent wave function
describing the quantum mechanical state at timet is expanded
in terms of the two adiabatic states

where Ci(t) are complex-valued expansion coefficients (i.e.,
quantum amplitudes). Note that the adiabatic states are also time-
dependent through the classical trajectoryx(t). Substitution of
the wave functionΨ(x,t) into the time-dependent Schro¨dinger
equation using the adiabatic Hamiltonian matrixH̃ad given in
eq 10 leads to the following equations of motion for the quantum
amplitudes:

wherex3 denotes the time derivatives of the coordinatesx and
dkj is the nonadiabatic coupling vector defined as

for j * k anddkk ) 0. In density matrix notation, the density
matrix elements are defined asakj ) CkCj

/, where the diagonal
density matrix elementsakk are the occupation probabilities of
the adiabatic states, and the off-diagonal elementsakj describe
the coherence. In practice, eqs 15 and 17 are integrated
numerically to simultaneously propagate the coordinates and
momenta (x, p) and the quantum amplitudesCj.

The surface hopping calculations in this paper are based on
the molecular dynamics with quantum transitions (MDQT)
surface hopping method.14,15 The MDQT method implements
Tully’s fewest switches algorithm,14 which is designed to
correctly apportion trajectories among the states according to
the quantum probabilities|Cj(t)|2 with the minimum required
number of quantum transitions. In this algorithm the probability
of switching states is defined in terms of the rate of change of
the occupation probabilities, which can be derived from eq 17
to be

where

The rate of change of the occupation probability for statek due
to coupling with statej is bkj, so the change in the occupation
probability for statek due to coupling with statej over a short
time interval δt is bkjδt. The number of state switches is
minimized by assuming that the flux of probability between
each pair of states results from probability transferring in only
one direction. According to this algorithm, the probability of
switching from the current statek to another statej during the
time interval betweent and t + δt is

wherebjk andakk are assumed to remain approximately constant
during the short time intervalδt and thus can be evaluated either
at time t or at time t + δt. If bjk < 0 then the occupation
probability of the occupied statek can be viewed as increasing
due to coupling with statej, so the probability of switching from
statek to statej is zero. On the other hand, ifbjk > 0 then the
occupation probability of the occupied statek can be viewed
as decreasing due to coupling with statej, so the probability of
switching from statek to statej is bjkδt/akk. References 14 and
22 illustrate that this algorithm achieves the correct statistical
populations of the states for model systems.

In order to determine whether a switch to any statej will
occur, a uniform random numberê (0 < ê < 1) is selected at
each time step in the trajectory. For example, for a two-state
system, if the occupied statek ) 1 then a switch to state 2 will
occur if ê < g12. If a switch to a different statej does occur
and if Wk * Wj, then the velocities must be adjusted in order to
conserve total energy. The velocities should be adjusted as if
they were subjected to a force in the direction of the nonadiabatic
coupling vector.14 As derived in ref 15, the new velocitiesx3 ′

Eh )
1

2[(E2 + ∑
j)1

2

κj
(2)xj) + (E1 + ∑

j)1

2

κj
(1)xj)] (11)

Wk(x) ) Hkk
ad - TN (12)

Ψ(x,t) ) ø1(x,t)ψ1
dia + ø2(x,t)ψ2

dia (13)

iø̆1
dia(x,t) ) V11(x)ø1

dia(x,t) + V12(x)ø2
dia(x,t)

iø̆2
dia(x,t) ) V21(x)ø1

dia(x,t) + V22(x)ø2
dia(x,t) (14)

mjẍj ) -
∂Wk(x)

∂xj
(15)

Ψ(x,t) ) C1(t)ψ1
ad(x) + C2(t)ψ2

ad(x) (16)

Ċk ) -iCkWk - ∑
j)1

2

Cjx3 ‚dkj (17)

dkj ) 〈ψk
ad|∇xψj

ad〉 ) ∑
i)1

2

Sik∇xSij (18)

ăkk ) ∑
j*k

bkj (19)

bjk ) -2Re(ajk
/x3 ‚djk) (20)

gkj(t,δt) ) max(0,
bjkδt

akk
) (21)
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can be calculated as follows:

wheredkj
i specifies theith component of the three-dimensional

vectordkj, and

where

and

Note that a switch can occur only if

Otherwise, there is not enough velocity in the direction of the
nonadiabatic coupling vector to maintain energy conservation,
and the system remains in the initial quantum state. This
situation is denoted a classically forbidden transition. Within
the framework of standard MDQT, there are two different
approaches for determining the velocities after classically
forbidden transitions. In the first approach, the component of
velocity in the direction of the nonadiabatic coupling vector is
reversed; i.e., the velocities are changed according to eq 22 with
γkj ) âkj/Rkj.l5 In the second approach, the velocities are not
adjusted.33 In either approach, these classically forbidden
transitions lead to inconsistencies between the fraction of
trajectoriesFi(t) in each statei and the corresponding average
quantum probability〈|Ci(t)|2〉.

2. MDQT* Method for Eliminating Classically Forbidden
Switches. Recently we presented a modified MDQT method
(denoted MDQT*) originally proposed by Tully57 to eliminate
classically forbidden transitions. In MDQT* the quantum
amplitudes are integrated using modified velocitiesx3 ij:

and the velocityx3 jk replacesx3 in eq 20 for the calculation ofbjk

used to calculate the probability of switching from statek to
statej. The modified velocities are defined as

wherex3 is the classical velocity for the occupied statek, and
x̆′i, x̆′j, andx̆ are the magnitudes of the three-dimensional vectors
x3 ′i, x3 ′j, andx3 , respectively. (Note thatx3 ij ) x3 ji.)

In this paper we examine two different approaches for
defining the modified velocities within the framework of
MDQT*. In both approaches,x̆′j ) 0 if a switch from the

occupied statek to statej would be classically forbidden (i.e.,
if eq 27 is not satisfied). Otherwise, in the first approachx3 ′j is
the velocity that would be obtained using the prescription in eq
22 to conserve total energy for a transition from the occupied
statek to statej, and in the second approachx3 ′j ) x3 . (Note that
in both approachesx3 ′k ) x3 .) In both MDQT* approaches, if a
hop from statek to statej would be classically forbidden, the
nonadiabatic coupling between statesk and j vanishes (i.e., all
components ofx3 kj are zero) so the flux of quantum probability
from statek to statej vanishes (i.e.,bjk ) 0). According to the
fewest switches algorithm, in this case the probability of
switching from statek to statej is zero (i.e.,gkj ) 0). Thus, the
classically forbidden transitions are eliminated.

We emphasize that MDQT* is not based on rigorous
theoretical grounds, but rather is a minor modification that
eliminates the classically forbidden transitions while maintaining
the appealing simplicity and computational speed of MDQT.
MDQT* is the same as MDQT in that the classical subsystem
moves according to standard classical equations of motion using
the positionsx and velocitiesx3 on the occupied statek.
Moreover, MDQT and MDQT* use the same fewest switches
algorithm and the same method for scaling velocities after a
state switch to conserve total energy. MDQT* differs from
MDQT only in the integration of the quantum amplitudes, which
invokes the modified velocities. In the first MDQT* approach,
the modified velocities are geometric averages of the velocities
in different states. In the second MDQT* approach, the modified
velocities are identical to the standard velocity used in MDQT
(i.e., the velocity for the occupied state) except that the modified
velocity is set to zero if a transition would be classically
forbidden. The second MDQT* approach is more appealing in
that it is identical to standard MDQT in the absence of classically
forbidden transitions. In both MDQT* approaches, however,
MDQT* is virtually identical to MDQT far from the nonadia-
batic coupling region (since the nonadiabatic coupling vanishes)
and in the strong coupling region (since the energy difference
between the coupled states is so small that the velocity
adjustment due to a transition would be negligible). Furthermore,
the results in ref 50 and in this paper indicate that the MDQT
and MDQT* methods lead to virtually identical adiabatic
populations (determined by the fraction of trajectories in each
adiabatic state) for a variety of model systems.

3. RemoVal of Coherence of the Quantum Amplitudes. As
discussed in the Introduction, even in the absence of classically
forbidden switches, the fewest switches algorithm does not
always maintain consistency between the fraction of trajectories
Fi(t) and the average quantum probability〈|Ci|2〉. In standard
MDQT the quantum amplitudes are propagated coherently
throughout each trajectory. When independent trajectories
diverge, this coherent propagation may lead to an inconsistency
between the fraction of trajectories in each state and the
corresponding average quantum probability. This internal
inconsistency can be improved if the quantum amplitudes are
reset so that the quantum amplitude of the occupied state is
unity after passing through a nonadiabatic coupling region. In
this paper the quantum amplitudes are reset when the magnitude
of the nonadiabatic coupling vector|d12| between the two
adiabatic states becomes smaller than a specified tolerance.
Clearly this resetting of the quantum amplitudes is not appropri-
ate for systems where the quantum interference between
nonadiabatic coupling regions is important.29,31 This resetting
of the quantum amplitudes is physically justified, however, if
the quantum interference effects between the nonadiabatic
coupling regions are washed out by decoherence effects or by

x̆′i ) x̆i - γkjdkj
i /mi (22)

γkj ≡
âkj + xâkj

2 + 4Rkj[Wk(x) - Wj(x)]

2Rkj
, âkj < 0 (23)

γkj ≡
âkj - xâkj

2 + 4Rkj[Wk(x) - Wj(x)]

2Rkj
, âkj g 0 (24)

Rkj ≡ 1/2∑
i)1

3

mi
-1(dkj

i )2 (25)

âkj ≡ ∑
i)1

3

x̆idkj
i (26)

âkj
2 + 4Rkj[Wk(x) - Wj(x)] g 0 (27)

Ċi ) -iCiWi - ∑
j)1

2

Cjx3 ij‚dij (28)

x3 ij ) xx̆′ix̆′j
x3
x̆

(29)
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averaging over a range of initial conditions. In this paper the
resetting of the quantum amplitudes is used as a numerical tool
to correct a deficiency of the MDQT method.

C. Initial Conditions. The fully quantum calculations were
performed in the diabatic representation. In this case, the initial
wavepacket is a Gaussian wavepacket on the second diabatic
electronic state:

whereA is a normalization factor. Note that the exponential
also includes a units conversion factor from use of the identity
ωjmj ) 1.

The MDQT calculations were performed in the adiabatic
representation. In this case, the initial conditions for the nuclear
variables were obtained from classical action-angle
variables:33,58

where the anglesRj are randomly picked from the interval [0,
2π]. Again, these expressions include a units conversion factor
from use of the identityωjmj ) 1. Note that these initial
conditions were chosen to allow direct comparison to the results
in ref 33. Discrepancies between the fully quantum and MDQT
initial conditions for the nuclear variables may be responsible
for small differences between the MDQT and fully quantum
calculations. The initial conditions for the quantum probabilities
in the adiabatic representation were obtained by applying the
projection operator defined in ref 55 to the initial wavepacket
in the diabatic representation. The fraction of trajectories starting
in each adiabatic state was chosen to be consistent with these
quantum probabilities, and the phases of the initial quantum
amplitudes were set to zero. 5000 trajectories were propagated
with a time step of 0.012 fs for each calculation.

IV. Results

In this section we present the results of the application of
the methods discussed in section III to the model system for
internal conversion in pyrazine described in section II. Figure
2 depicts the time evolution of the population (i.e., the
occupation probability) of the upper adiabatic state. For the fully
quantum results we plot∫ dx |ψ2

ad(x,t)|2, and for the surface
hopping results we plot both the average quantum probability
〈|C2(t)|2〉 and the fraction of trajectoriesF2(t). The fully quantum
results are shown with solid lines and the surface hopping results
are shown with dashed lines. In all cases the population of the
upper adiabatic state exhibits an ultrafast initial decay within
less than 50 fs, followed by a number of weak recurrences.

Figure 2a,b depicts the results of the standard MDQT method,
where in Figure 2a the component of velocity in the direction
of the nonadiabatic coupling vector is reversed after a classically
forbidden transition and in Figure 2b the velocities are not
altered after a classically forbidden transition. In both cases the
fraction of trajectories in the upper state for the MDQT
calculations agrees qualitatively with the fully quantum results.
As shown previously,33 the quantitative agreement is better for
the algorithm in which the velocities are not adjusted after
classically forbidden transitions. In particular, for the results
with velocity reversal (Figure 2a), the first few recurrences are

weaker, and the recurrences are completely damped out at later
times. In both MDQT methods, however, the quantum prob-
ability does not agree well with the fraction of trajectories,
indicating a significant internal inconsistency.

As discussed in the Introduction, the reason most often cited
for this lack of internal consistency in MDQT is the existence
of classically forbidden transitions. Figure 3 depicts the time
evolution of the total number of classically forbidden transitions
for 5000 trajectories (corresponding to the results in Figure 2b).
The classically forbidden transitions start to occur at∼5 fs and
continue to occur at a constant rate of 0.02 fs-1 per trajectory
(i.e., 2% of the trajectories exhibit a classically forbidden
transition each femtosecond). The absence of a significant
number of classically forbidden transitions before∼5 fs is due
to the use of initial conditions with 96% of the trajectories
starting on the upper state. (All transitions from the upper to
the lower state are allowed.) The substantial number of
classically forbidden switches occurring after∼5 fs suggests
that this may be a cause of the internal inconsistency in these
calculations. On the other hand, the number of classically
forbidden transitions increases at a constant rate, whereas the
discrepancy between the quantum probability and the fraction
of trajectories becomes virtually constant after 200 fs. This
observation suggests that the classically forbidden transitions
may not be the main cause of this discrepancy.

To determine the degree to which the classically forbidden
transitions are responsible for the significant internal inconsis-
tency illustrated in Figure 2a,b, we applied the MDQT* method
to this model system. Figure 2, c and d, depicts the results of
the standard MDQT* method using the two different prescrip-
tions discussed in section III. The results are virtually identical
for the two different prescriptions and are similar to the results
of Figure 2b. The quantum probability still does not agree well
with the fraction of trajectories for the MDQT* method. Thus,
these results indicate that the classically forbidden transitions
are not responsible for the large internal inconsistency.

As discussed in the Introduction, another cause of internal
inconsistency is the divergence of the independent trajectories
in the ensemble, which may lead to a breakdown of the basic
assumption of the fewest switches algorithm. If the independent
trajectories diverge while the ensemble is passing through the
nonadiabatic coupling region and the flux of population is
predominantly unidirectional throughout this region, the fraction
of trajectories in each state could be accurate while the average
quantum probabilities are inconsistent. In support of this
hypothesis, Figure 4 depicts the distribution of quantum
probabilities|C2(t)|2 after the ensemble has first passed through
the nonadiabatic coupling region (t ) 67.7 fs) for the calcula-
tions shown in Figure 2d. Although∼30% of the trajectories
have a quantum probability less than 0.1, the remaining
trajectories have quantum probabilities ranging from 0.1 to 0.95.
These trajectories must have followed divergent paths when the
ensemble passed through the region of nonadiabatic coupling.
As a result, their quantum amplitudes are not representative of
the ensemble.

This source of the internal inconsistency can be eliminated
by removing the coherence of the quantum amplitudes when
each trajectory leaves the nonadiabatic coupling region. As
discussed in section III, in our calculations the criterion for
resetting the quantum amplitudes to unity for the occupied state
is the magnitude of the nonadiabatic coupling vector|d12|
becoming less than a specified tolerance. In our calculations,
we used a tolerance of 0.1 au. To justify this choice, Figure 5
depicts the magnitude of the nonadiabatic coupling vector for

ψ1
dia(x) ) 0

ψ2
dia(x) ) A exp[-1/2(x1

2 + x2
2 + x3

2)] (30)

xj(0) ) sin Rj

pj(0) ) cosRj (31)
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three representative trajectories. Note that the tolerance was
chosen to be close to the minimum value of|d12| for these
representative trajectories. Figure 2, e and f, depicts the results
of the MDQT and MDQT* methods (corresponding to Figure

2, b and d) with the coherence removed using this method. In
this case, the quantum probability agrees extremely well with
the fraction of trajectories. We emphasize that the resetting of
the quantum amplitudes enforces the internal consistency by
construction. As shown in Figure 2, however, this resetting of

Figure 2. Time evolution of the population (i.e., the occupation probability) of the upper adiabatic state for fully quantum and surface hopping
calculations. The fully quantum results depict∫ dx |ψ2

ad(x,t)|2 (solid line), and the surface hopping results depict both the average quantum
probability〈|C2(t)|2〉 (long dashed line) and the fraction of trajectoriesF2(t) (short dashed line). (a) Standard MDQT with the component of velocity
in the direction of the nonadiabatic coupling vector reversed after classically forbidden transitions; (b) standard MDQT with no modification of the
velocities after classically forbidden transitions; (c) standard MDQT* with the modified velocity defined such thatx̆′j (used in eq 29) is set to zero
if a transition to statej would be classically forbidden and to the magnitude of the velocity that would be obtained by conserving total energy after
a transition to statej otherwise; (d) standard MDQT* with the modified velocity defined such thatx̆′j (used in eq 29) is set to zero if a transition
to statej would be classically forbidden and tox̆ otherwise; (e) MDQT method of Figure 2b with quantum amplitudes reset so that the quantum
probability of the occupied state is unity when|d12| < 0.1 au; (f) MDQT* method of Figure 2d with quantum amplitudes reset so that the quantum
probability of the occupied state is unity when|d12| < 0.1 au.

Figure 3. Time evolution of the total number of classically forbidden
transitions for the 5000 MDQT trajectories corresponding to Figure
2b.

Figure 4. A normalized distribution of the quantum probabilities at
time t ) 67.7 fs for the MDQT* results shown in Figure 2d.

Internal Consistency in Trajectory Surface Hopping J. Phys. Chem. A, Vol. 103, No. 47, 19999405



the quantum amplitudes not only improves the internal consis-
tency but also slightly improves the agreement between the
surface hopping and the exact quantum results for the adiabatic
populations.

These results indicate that the internal inconsistency is due
mainly to the breakdown of the fewest switches algorithm
resulting from diverging trajectories. On the other hand, a
comparison of Figure 2, e and f, indicates that the internal
consistency is better for MDQT* than for MDQT. Specifically,
the value of the difference between the quantum probability
and the fraction of trajectories averaged over times greater than
100 fs is 0.011 for MDQT* (Figure 2f) and 0.024 for MDQT
(Figure 2e). Thus, the elimination of classically forbidden
switches is also a significant aspect of maintaining internal
consistency.

V. Conclusions

In this paper we identified two reasons for discrepancies
between the fraction of trajectories in each state and the
corresponding average quantum probability in MDQT calcula-
tions. One reason for this discrepancy is the existence of
classically forbidden transitions. Another reason for this dis-
crepancy is that divergence of the independent trajectories may
lead to a breakdown of the basic assumption of the fewest
switches algorithm. We presented modifications of MDQT to
improve the internal consistency. In these methods the classically
forbidden switches are eliminated by using modified velocities
for the integration of the quantum amplitudes, and the difficulties
due to divergent trajectories are alleviated by removing the
coherence of the quantum amplitudes when each trajectory
leaves the nonadiabatic coupling region. We compared the
standard and modified MDQT methods to fully quantum
calculations for a classic model for ultrafast electronic relaxation
(i.e., a two-state three-mode model of the conically intersecting
S1 and S2 excited states of pyrazine). For this model, the standard
MDQT calculations exhibited significant discrepancies between
the fraction of trajectories in each state and the corresponding
average quantum probability. Our results indicate that for this
model the divergence of independent trajectories is mainly
responsible for this large internal inconsistency, although the
classically forbidden transitions also cause minor discrepancies.
The modified MDQT method improving both aspects resulted
in remarkable internal consistency for this model system. Thus,
this modified MDQT method should be useful for future surface
hopping calculations on similar systems that are vibronically
coupled through a conical intersection.

Surface hopping methods such as MDQT are appealing due
to their conceptual simplicity and computational speed. Com-

parisons of MDQT to fully quantum calculations for simple one-
dimensional model systems illustrate the potential accuracy of
these methods.14,24,25 On the other hand, surface hopping
methods have been shown to be inaccurate for certain types of
systems.27-29 For example, surface hopping methods are
problematic for processes involving an extended nonadiabatic
coupling region or a large number of successive recrossings of
a nonadiabatic coupling region.29,31Moreover, surface hopping
methods are not appropriate when tunneling of the classical
degrees of freedom is important (i.e., for processes involving
classically treated reacting H atoms). To determine when surface
hopping methods are accurate, these methods should be
compared to fully quantum results for a wide range of different
types of models. Future work will center on testing the modified
MDQT method presented in this paper for other model systems
to determine the extent of its applicability.
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